CMSC202
Computer Science |l for Majors

Lecture 19 and 20 —
STL and lterators

www.umbc.edu

Last Class We Covered

 Templates
— How to implement them
— Possible problems (and solutions)
— Compiling with templates

* Bits & Pieces

— Initialization lists
— The “grep” command
— Redirecting input and output

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

 STL
— Standard Template Library

— Containers

* |terators
— Purpose
— Manipulating

www.umbc.edu

e STLis the Standard Template Library

e STL contains many useful things, including...
— Containers

— lterators

— Both are templated, which means we can use
them with any type of data we want

www.umbc.edu

Why Use the STL?

Good programmers know what to write

Great programmers know what to reuse

STL provides reusable code

Linked list, vector, map, multimap, pair, set,
multiset, queue, stack, etc.

Don’t reinvent the wheel
—Unless we tell you to!

www.umbc.edu

STL Containers

www.umbc.edu

STL Containers

* All containers support a few basic methods

—size ()

—empty ()

—clear ()

* All containers are implemented as a class

www.umbc.edu

STL Containers

* Vectors

— Dynamic (size can be changed)

— Sequential container (elements in an order)

— Allows random access
* Using [] or .at ()

www.umbc.edu

STL Containers

* Lists
— Linked List, (not the “list” in Python)
— Sequential (elements in an order)
— Does not support random access

— Basic functions include:
* insert ()
* push back() / push front()
* pop back() / pop front()

* erase ()

10

www.umbc.edu

STL Containers

e Sets

— Elements are sorted when added to the set
* Uses operator< by default

— Cannot change the value of an element once added
— No random access

— Basic functions include:
* insert ()
e count ()
e £find ()

* erase ()

11

www.umbc.edu

STL Containers

 Multisets
— Same as a set, but...
* Allow duplicate elements

— Elements are sorted when added to the set
* Uses operator< by default
— Cannot change the value of an element once added
— No random access
— Same basic functions as well

12

www.umbc.edu

STL Containers

* Pairs
— Connects two items into a single object
— (Sort of like a tuple in Python)

— Member variables:
e first

* second

— Pair containers are used by other containers

13

www.umbc.edu

Examples of Using Pair

* To combine an int and a string into a pair

pair<int, string> exl(5, "hello");

* You can then access the values in the pair
using standard "dot" notation

cout << exl.second << endl; // "hello"

14

www.umbc.edu

Examples of Using Pair

* Afunction template named make pair ()
can be used to create pair objects

pair<int, string> ex2 =
make pair (7, "ciao");

* A pair can be made with any two pieces of
information (doesn’t have to be int and string)

15

www.umbc.edu

STL Containers

* Maps
— Stores key/value pairs
— Sorts by key
* Key must be unique
* Key is not modifiable
* Value is modifiable

16

www.umbc.edu

STL Containers

* Multimaps
— Stores key/value pairs
— Sorts by key (allows duplicate keys)
* Key does not need to be unique

* Key is not modifiable
e Value is modifiable

17

www.umbc.edu

Map and Multimap Functions

e Basic functions of Maps include:
—insert ()
— count ()
— f£find ()

— erase ()

18

www.umbc.edu

lterators

www.umbc.edu

lterators

* Problem
— Not all STL classes provide random access
— How do we do “for each element in X”?

e Solution
— [terators

|I)

e “Special” pointers

— “lterate” through each item in the collection

* Also: encapsulation

— User shouldn’t need to know how it works

20

www.umbc.edu

About Iterators

e Allows the user to access elements in a data
structure using a familiar interface, regardless
of the internal details of the data structure

* An iterator should be able to:
— Move to the beginning (first element)
— Advance to the next element
— Return the value referred to
— Check to see if it is at the end

21

www.umbc.edu

Kinds of Iterators

 Forward iterators:

— Using ++ works on iterator

 Bidirectional iterators:

— Both ++ and -- work on iterator

e Random-access iterators:

— Using ++, --, and random access all work
with iterator

 These are "kinds" of iterators, not types!

22

www.umbc.edu

lterators

e Essential operations
—begin ()
* Returns an iterator to first item in collection
—end ()

e Returns an iterator ONE BEYOND the last item
in collection

* Why does it do this?
— If the collection is empty, begin() == end()

23

www.umbc.edu

Constant and Mutable Iterators

e Behavior of the dereferencing operator
dictates if an iterator is constant or mutable

* Constant iterator:
— Cannot edit contents of container using iterator

 Mutable iterator:
— Can change corresponding element in container

24

www.umbc.edu

Constant Iterators

* Constant iterator:
— * produces read-only version of element

— Can use *p to assign to variable or output,
but cannot change element in container

e e.g., *p = <anything>; is illegal

— *p can only be on the right hand side of the
assignment operator

25

www.umbc.edu

Mutable Iterators

* Mutable iterator:
— *p can be assigned value

— Changes corresponding element in container

e j.e.: *p returns an lvalue

— *p can be on the left hand side of the assignment
operator

— (and the right hand side)

26

www.umbc.edu

Vector Example

* Here’s a very basic example of using an
iterator to move through a vector:

vector<int> v; // £ill up v with data...

for (vector<int>::iterator it = v.begin();
it '= v.end(); ++it) {
cout << *it << endl;

e This basic example should work regardless of

the container type!
27

www.umbc.edu

Set Example

AN HONORS UNIVERSITY IN MARYLAND

int main ()

{
set<int> iSet;

iSet.insert (4) ;
iSet.insert (12) ;
iSet.insert (7);

// this looping construct works for all containers
set<int>::const iterator position;

for (position = iSet.begin(); position != iSet.end();
++position)

{
cout << *position << endl;

}

return 0;

www.umbc.edu

Map Example

AN HONORS UNIVERSITY IN MARYLAND

int main ()

{
// create an empty map using strings
// as keys and floats as values
map<string, float> stocks;

// insert some stock prices

stocks.insert(make pair ("IBM", 42.50));
stocks.insert(make pair ("XYZ", 2.50));
stocks.insert(make pair ("WX", 0.50));

// instantiate an iterator for the map
map<string, float>::iterator position;

// print all the stocks

for (position = stocks.begin(); position != stocks.end(); ++position)
cout << "(" << position->first << ", " << position->second << ")\n";
return 0O;

www.umbc.edu

Iterators - Overloaded Operators

30

Dereferences the iterator

Moves forward to next element
Moves backward to previous element

True if two iterators point to same element
True if two iterators point to different elements

Assignment, makes two iterators
point to same element

www.umbc.edu

Reverse lterators

* The easiest way to iterate through a container
in reverse is to use a reverse iterator
reverse iterator p;
for (rp = container.rbegin();

rp '= container.rend(); rp++)
cout << *rp << " " ;

* When using a reverse iterator, use rbegin ()
and rend () instead of begin () and end ()

31

www.umbc.edu

Practice Problems

* Create a vector of integers
e Using an iterator and a loop

— Change each integer to be the value of its square

e Using an iterator and a second loop

— Print each item in reverse order

32

www.umbc.edu

Announcements

* SCEQs next time

— Very important metric — please fill them out!

* Project5is out
— Due May 5th by 9:00 PM

* Final Exam is...
— May 17th (Tuesday) 3:30 to 5:30 PM
— Lecture Hall 1 (here)
— Comprehensive!

33

www.umbc.edu

